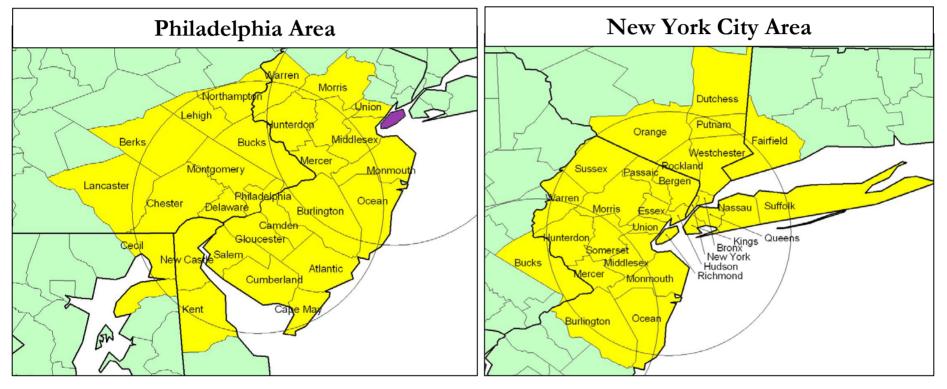
High Electricity Demand Day Ozone Attainment Strategies for OTC

Analysis of Select Control Options

Chitra Kumar

December 6, 2006



Options Analyzed

- SNCR
- Water Injection
- Fuel-switching

Opportunities for command and control may exist, but may be costly

Analysis Focus: NYC and Philadephia

- Counties chosen as "in the circle":
 - Were predicted to remain in non-attainment in 2015 with CAIR,
 - Had at least a portion of area within a 50-mile radius of the respective city center or included major EGUs.
 - NOTE: There is some overlap between areas

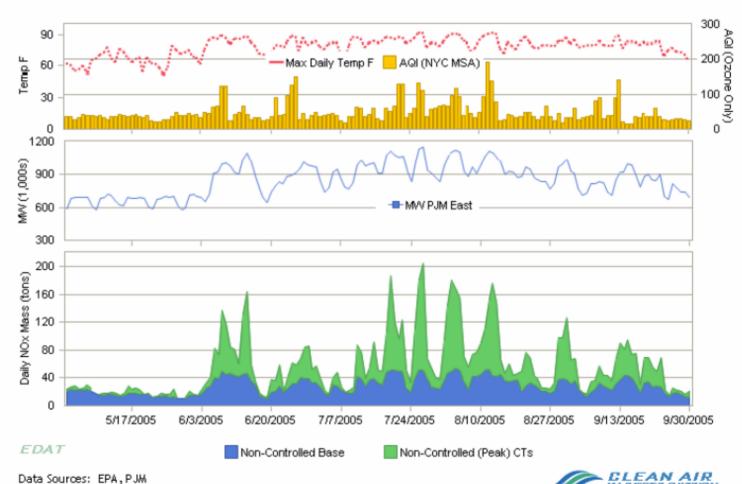
Daily PJM Load, NOx Emissions, CASTNET Met and AQI Ozone Season 2005

NOTES: Daily Max Temperature (F) is at CASTNET site in Washington Crossing, NJ 'WSP144'.

AQI is ozone value only for MSA indicated.

PJM-East Load is aggregated daily total from telemetry data.

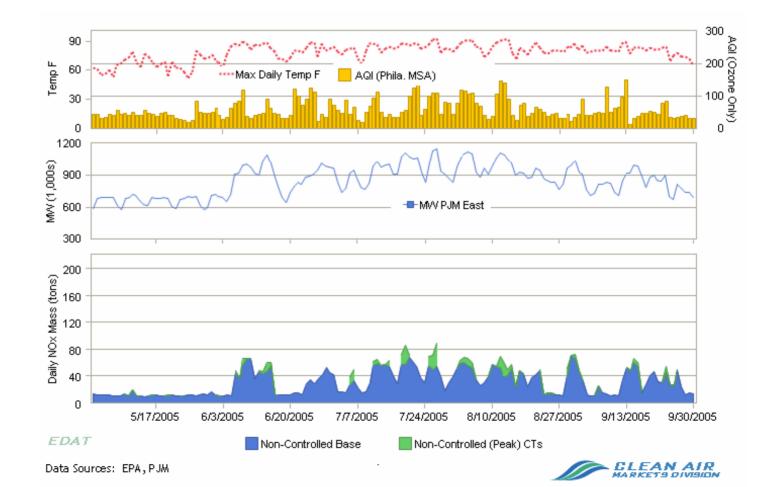
Daily NOx Emissions in tons. Analysis considers all electrical generating and large industrial sources in select counties* from the New York City and Philadelphia metropolitan areas which report data to EPA under 40 CFR Part 75.

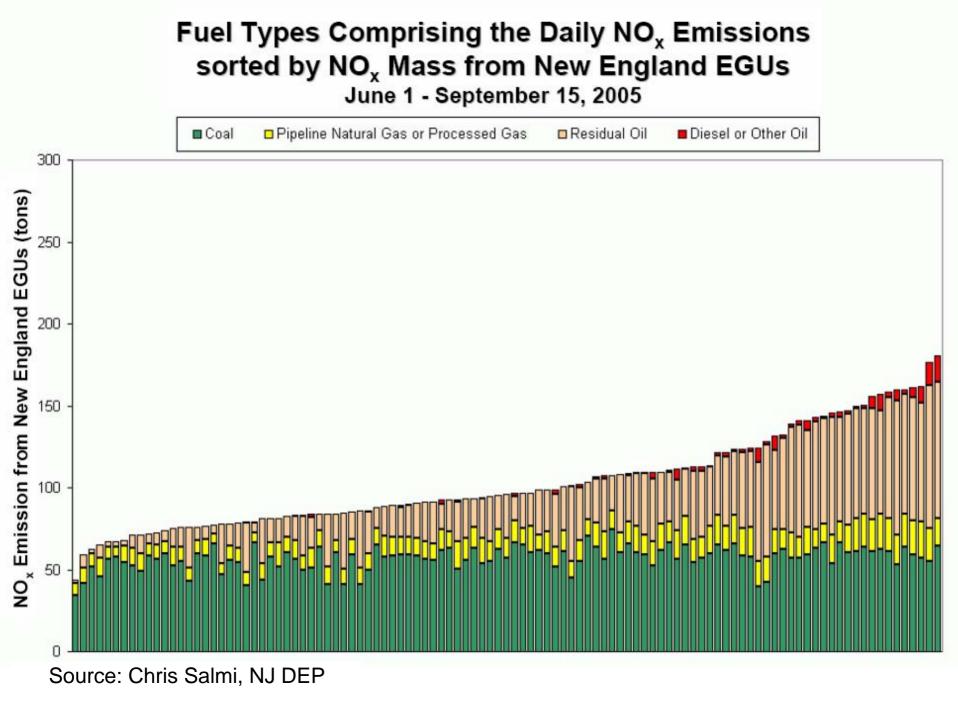

Peak units defined at <= 1,100 hours of operation in 2005 ozone season. Includes only unit type CT (Combustion Turbines).

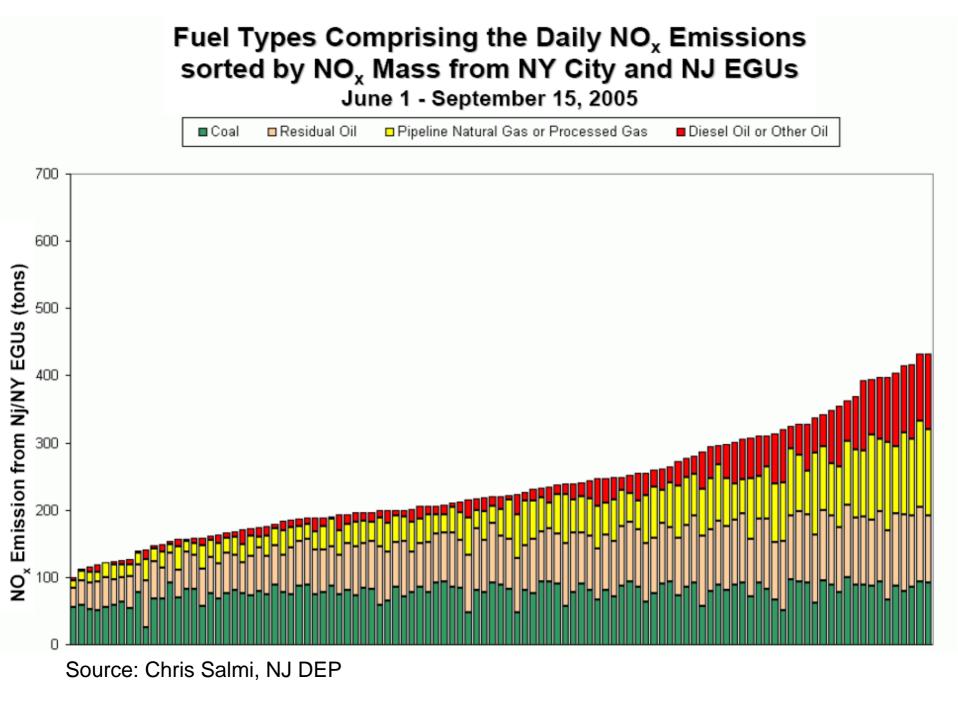
Base units defined at > 1,100 hours during the 2005 ozone season. Includes all unit types.

Metro NYC, NY

MSA 5600 Non-Controlled Units


- Selecting 2005 ozone season days with a maximum daily temp of approximately 90 F will capture most AQI ozone days >100 (orange or higher) in MSA 5600.
- There appears to be a close correlation between PJM East load and the dispatch of non-controlled units in metro NYC area. Note that PJM only called the peaking units during periods of warm temperatures. PJM maximum load for 2005 was on July 26.




Philadelphia Non-Controlled Units, Daily PJM Load, NOx Emissions, CASTNET Met and AQI

07000 Coocon 200E

More uncontrolled units in Philadelphia area (MSA 6160) are coal than in NYC area

Technology Option 1 - SNCR

Cost Effectiveness for Coal Units with No Post-Combustion Controls to Install SNCR for 12-HEDD Use

	SNCR on Coal	
\$/Ton Removed	\$18,320	
\$/kW	\$19.18	
Incremental Annualized Capital Cost	\$443,254	
Incremental Variable Cost	\$42,557	
Total Incremental Cost	\$485,811	
Total Tons Removed per Unit Over 12 Days	26.5	

NOTES:

- Costs for an example unit based on average characteristics (capacity, NOx rate, heat rate) of capped, operating coal steam units with no post-combustion controls in OTR. Example unit has capacity of 188.67MW, NOx rate of 0.29 lbs/MMbtu, and heat rate of 10.9 MMBtu/MWh, and generation of 48,361 MWh/12-day-period to install SNCR with 35% removal efficiency. Costs may vary if applying to all uncontrolled coal units using other metrics (e.g. those with most air quality impact, all units of certain size/capacity factor/emission rate).
- 2. Unit data based on US EPA NEEDS 2004 and CAMD database; controls data from IPM v.2.1.9 CAIR 2010 projection.
- 3. Costs per ton are for targeted, HEDD/high ozone day reductions and, thus, are higher than costs averaged over a longer time period such as ozone season or annually.

Technology Option 2 – Water <u> Injection</u> Cost Effectiveness for Uncontrolled CTs to Install Water Injection for 12-High Electric Demand Day Use

	Water Injection
\$/Ton Removed	\$158,148
\$/kW	\$43.33
Incremental Annualized Capital Cost	\$426,741
Incremental Variable Cost	\$2,056
Total Incremental Cost	\$428,798
Total Tons Removed per Unit Over 12 Days	2.71

NOTES:

- 1. Uncontrolled units include only those without water injection or SNCR as projected in IPM v.2.1.9 CAIR 2010 run.
- Costs for an example unit, based on average characteristics of capacity (82.07MW), NOx rate (0.28 lbs/MMbtu), and heat rate (12.28 MMBtu/MWh), and generation of 3,546 MWh/12-day-period, to install water injection with removal efficiency of 45%. Costs may vary if applying to all uncontrolled CTs using other metrics (e.g. those with most air quality impact, all units of certain size/capacity factor/emission rate).
- 3. Unit data based on US EPA NEEDS 2004 and CAMD database.
- 4. Costs per ton are for targeted, HEDD/high ozone day reductions and, thus, are higher than costs averaged over a longer time period such as ozone season or annually.

Fuel-Switching Costs/Savings for Dual-Fuel Units Switching Entirely to Gas (Over Entire O₃

Season)

	AI	All Dual-fuel Residual Oil Units Dual-fuel Units			Diesel Oil Dual- fuel Units	
\$/Ton	\$	74,337	\$	77,138	\$	(50,883)
Ozone Season Cost	\$	113,294,664	\$	114,991,385	\$	(1,696,721)
Ozone Season Tons Reduced		1524		1491		33
% Ozone Season Nox Reduction (from 16,300 tons)		9.4%		9.1%		0.2%
Number of Rhabityel Units dual- & single-		69		40		29
fuel)		183		183		183
Dual-fuel Oil Units as % of All Oil Units		38%		22%		16%
Dual-fuel Oil Units % of All OTR Peaking Units (333)		21%		12%		9%
\$/Unit	\$	1,641,952	\$	2,874,785	\$	(58,508)

NOTES:

- 1 Based on 2005 data as reported to CAMD. This analysis includes only electricity generating units (CTs, CCs and boilers) that could sell to grid, operated <= 1,100 hours in 2005 ozone season ("peaking unit" definition) and had no NOx controls (assumed the units with NOx controls would not switch its fuel) as of 2005.
- 2. Dual-fuel units are those that have reported some hours burning oil to EPA in 2005, and also reported to CAMD gas as a primary or secondary fuel.
- 3. Average gas rate = 0.20 lbs/MMBtu. Average oil rate = 0.24 lbs/MMBtu.
- 4. Fuel prices are in 1999 dollars and are based on the prices from IPM 3.0 Base Case. 2010 Gas Price (\$/MMBtu)= 6.12 Distillate Price (\$/MMBtu)= 8.92 Residual Oil Price (\$/MMBtu) = 4.60

Conclusions

- Opportunities for command and control may exist, but may be costly
- Use of CAIR allowances to encourage
 additional HEDD reductions raises concerns
- Clean energy options (including enhanced energy efficiency, demand response, combined heat and power and solar energy) provide significant benefits